
Mining Frequent Itemsets over Uncertain Databases

Yongxin Tong † Lei Chen † Yurong Cheng ‡ Philip S. Yu §

†Hong Kong University of Science & Technology, Hong Kong, China
‡Northeastern University, China

§University of Illinois at Chicago, USA
†{yxtong, leichen}@cse.ust.hk, ‡cyrneu@gmail.com, §psyu@cs.uic.edu

ABSTRACT
In recent years, due to the wide applications of uncertain da-
ta, mining frequent itemsets over uncertain databases has at-
tracted much attention. In uncertain databases, the support
of an itemset is a random variable instead of a fixed occur-
rence counting of this itemset. Thus, unlike the correspond-
ing problem in deterministic databases where the frequent
itemset has a unique definition, the frequent itemset under
uncertain environments has two different definitions so far.
The first definition, referred as the expected support-based
frequent itemset, employs the expectation of the support
of an itemset to measure whether this itemset is frequent.
The second definition, referred as the probabilistic frequent
itemset, uses the probability of the support of an itemset
to measure its frequency. Thus, existing work on mining
frequent itemsets over uncertain databases is divided into
two different groups and no study is conducted to compre-
hensively compare the two different definitions. In addition,
since no uniform experimental platform exists, current so-
lutions for the same definition even generate inconsistent
results. In this paper, we firstly aim to clarify the relation-
ship between the two different definitions. Through exten-
sive experiments, we verify that the two definitions have a
tight connection and can be unified together when the size of
data is large enough. Secondly, we provide baseline imple-
mentations of eight existing representative algorithms and
test their performances with uniform measures fairly. Final-
ly, according to the fair tests over many different benchmark
data sets, we clarify several existing inconsistent conclusions
and discuss some new findings.

1. INTRODUCTION
Recently, with many new applications, such as sensor net-

work monitoring [23, 24, 26], moving object search [13, 14,
15] and protein-protein interaction (PPI) network analysis
[29], uncertain data mining has become a hot topic in data
mining communities [3, 4, 5, 6, 20, 21]. Since the problem of
frequent itemset mining is fundamental in data mining area,

mining frequent itemsets over uncertain databases has also
attracted much attention [4, 9, 10, 11, 17, 18, 22, 28, 30, 31,
33]. For example, with the popularization of wireless sen-
sor networks, wireless sensor network systems collect huge
amount of data. However, due to the inherent uncertain-
ty of sensors, the collected data are often inaccurate. For
the probability-included uncertain data, how can we discov-
er frequent patterns (itemsets) so that the users can under-
stand the hidden rules in data? The inherent probability
property of data is ignored if we simply apply the tradition-
al method of frequent itemset mining in deterministic data
to uncertain data. Thus, it is necessary to design special-
ized algorithms for mining frequent itemsets over uncertain
databases.

Before finding frequent itemsets over uncertain databases,
the definition of the frequent itemset is the most essential
issue. In deterministic data, it is clear that an itemset is fre-
quent if and only if the support (frequency) of this itemset
is not smaller than a specified minimum support, min sup
[7, 8, 19, 32]. However, different from the deterministic case,
the definition of a frequent itemset over uncertain data has
two different semantic explanations: expected support-based
frequent itemset [4, 18] and probabilistic frequent itemset [9].
Both of which consider the support of an itemset as a dis-
crete random variable. However, the two definitions are
different on using the random variable to define frequent
itemsets. In the definition of the expected support-based
frequent itemset, the expectation of the support of an item-
set is defined as the measurement, called as the expected
support of this itemset. In this definition [4, 17, 18, 22], an
itemset is frequent if and only if the expected support of such
itemset is no less than a specified minimum expected sup-
port threshold, min esup. In the definition of probabilistic
frequent itemset [9, 28, 31], the probability that an itemset
appears at least the minimum support (min sup) times is
defined as the measurement, called as the frequent proba-
bility of an itemset, and an itemset is frequent if and only if
the frequent probability of such itemset is larger than a given
probabilistic threshold.

The definition of expected support-based frequent itemset
uses the expectation to measure the uncertainty, which is a
simply extension of the definition of the frequent itemset in
deterministic data. The definition of probabilistic frequent
itemset includes the complete probability distribution of the
support of an itemset. Although the expectation is known as
an important statistic, it cannot show the complete proba-
bility distribution. Most prior researches to believe that the
two definitions should be studied respectively [9, 28, 31].

However, we find that the two definitions have a rather
close connection. Both definitions consider the support of an
itemset as a random variable following the Poisson Binomial
distribution [2], that is the expected support of an itemset
equals to the expectation of the random variable. Conse-
quently, computing the frequent probability of an itemset is
equivalent to calculating the cumulative distribution func-
tion of this random variable. In addition, the existing math-
ematical theory shows that Poisson distribution and Normal
distribution can approximate Poisson Binomial distribution
under high confidence [31, 10]. Based on the Lyapunov Cen-
tral Limit Theory [25], the Normal distribution converges to
Poisson Binomial distribution with high probability. More-
over, the Poisson Binomial distribution has a sound prop-
erty: the computation of the expectation and variance are
the same in terms of computational complexity. Therefore,
the frequent probability of an itemset can be directly com-
puted as long as we know the expected value and variance
of the support of such itemset when the number of trans-
actions in the uncertain database is large enough [10] (due
to the requirement of the Lyapunov Central Limit Theo-
ry). In other words, the second definition is identical to the
first definition if the first definition also considers the vari-
ance of the support at the same time. Moreover, another
interesting result is that existing algorithms for mining ex-
pected support-based frequent itemsets are applicable to the
problem of mining probabilistic frequent itemsets as long as
they also calculate the variance of the support of each item-
set when they calculate each expected support. Thus, the
efficiency of mining probabilistic frequent itemsets can be
greatly improved due to the existence of many efficient ex-
pected support-based frequent itemset mining algorithms.
In this paper, we verify the conclusion through extensive
experimental comparisons.

Besides the overlooking of the hidden relationship between
the two above definitions, existing research on the same def-
inition also shows contradictory conclusions. For example,
in the research of mining expected support-based frequent
itemsets, [22] shows that UFP-growth algorithm always out-
performs UApriori algorithm with respect to the running
time. However, [4] reports that UFP-growth algorithm is
always slower than UApriori algorithm. These inconsisten-
t conclusions make later researchers confused about which
result is correct.

The lacking of uniform baseline implementations is one
of the factors causing the inconsistent conclusions. There-
fore, different experimental results originate from discrep-
ancy among many implementation skills, blurring what are
the contributions of the algorithms. For instance, the imple-
mentation for UFP-growth algorithm uses the ”float type” to
store each probability. While the implementation for UH-
Mine algorithm adopts the ”double type”. The difference
of their memory cost cannot reflect the effectiveness of the
two algorithms objectively. Thus, uniform baseline imple-
mentations can eliminate interferences from implementation
details and report true contributions of each algorithm.

Except uniform baseline implementations, the selection of
objective and scientific measures is also one of the most im-
portant factors in the fair experimental comparison. Because
uncertain data mining algorithms need to process a large
amount of data, the running time, memory cost and scala-
bility are basic measures when the correctness of algorithms
is guaranteed. In addition, to trade off the accuracy for ef-

ficiency, approximate probabilistic frequent itemset mining
algorithms are also proposed [10, 31]. For comparing the re-
lationship between the two frequent itemset definitions, we
use precision and recall as measures to evaluate the approxi-
mation effectiveness. Moreover, since the above inconsistent
conclusions may be caused by the dependence on dataset-
s, in this work, we choose five different datasets, two dense
ones and three sparse ones with different probability distri-
butions (e.g. Normal distribution Vs. Zipf distribution or
High probability Vs. Low probability).

To sum up, we try to achieve the following goals:
• Clarify the relationship of the existing two definitions

of frequent itemsets over uncertain databases. In fac-
t, there is a mathematical correlation between them.
Thus, the two definitions can be integrated together.
Based on this relationship, instead of spending expen-
sive computation cost to mine probabilistic frequent
itemsets, we can directly use the solutions for mining
expected support-based itemsets as long as the size of
data is large enough.
• Verify the contradictory conclusions in the existing re-

search and summarize a series of fair results.
• Provide uniform baseline implementations for all ex-

isting representative algorithms under two definition-
s. These implementations adopt common basic oper-
ations and offer a base for comparing with the future
work in this area. In addition, we also proposed a
novel approximate probabilistic frequent itemset min-
ing algorithm, NDUH-Mine which is combined with t-
wo existing classic algorithm: UH-Mine algorithm and
Normal distribution-based frequent itemset mining al-
gorithm.
• Propose an objective and sufficient experimental eval-

uation and test the performances of the existing rep-
resentative algorithms over extensive benchmarks.

The rest of the paper is organized as follows. In Sec-
tion 2, we give some basic definitions about mining frequent
itemset over uncertain databases. Eight representative algo-
rithms are reviewed in Section 3. Section 4 presents all the
experimental comparisons and the performance evaluations.
We conclude in Section 5.

2. DEFINITIONS
In this section, we give several basic definitions about min-

ing frequent itemsets over uncertain databases.
Let I = {i1, . . . , iv} be a set of v distinct items. We name

a non-empty subset, X, of I as an itemset. For brevity, we
use X = x1 . . . xw to denote itemset X = {x1, x2, . . . , xw}.
X is a l-itemset if it has l items. Given an uncertain trans-
action database UDB, each transaction is denoted as a tu-
ple < tid, Y > where tid is the transaction identifier, and
Y = {y1(p1), . . . , ym(pm)}. Y contains m units. Each unit
has an item yi and a probability, pi, denoting the possibility
of item yi appearing in the tid tuple. The number of transac-
tions containing X in UDB is a random variable, denoted as
sup(X). Given UDB, the expected support-based frequent
itemsets and probabilistic frequent itemsets are defined as
follows.

Definition 1. (Expected Support) Given an uncertain tra-
nsaction database UDB which includes N transactions, and
an itemset X, the expected support of X is:

esup(X) =

N∑
i=1

pi(X)

Table 1: An Uncertain Database
TID Transactions
T1 A (0.8) B (0.2) C (0.9) D (0.7) F(0.8)
T2 A (0.8) B (0.7) C (0.9) E (0.5)
T3 A (0.5) C (0.8) E (0.8) F (0.3)
T4 B (0.5) D (0.5) F (0.7)

Table 2: The Probability Distribution of sup(A)
sup(A) 0 1 2 3

Probability 0.02 0.18 0.48 0.32

Definition 2. (Expected-Support-based Frequent Itemset)
Given an uncertain transaction database UDB which in-
cludes N transactions, and a minimum expected support
ratio, min esup, an itemset X is an expected support-based
frequent itemset if and only if esup(X) ≥ N ×min esup

Example 1. (Expected Support-based Frequent Itemset)
Given an uncertain database in Table 1 and the minimum ex-
pected support, min esup=0.5, there are only two expected
support-based frequent itemsets: A(2.1) and C(2.6) where
the number in each bracket is the expected support of the
corresponding itemset.

Definition 3. (Frequent Probability) Given an uncertain
transaction database UDB which includes N transactions,
a minimum support ratio min sup, and an itemset X, X’s
frequent probability, denoted as Pr(X), is shown as follows:

Pr(X) = Pr{sup(X) ≥ N ×min sup}

Definition 4. (Probabilistic Frequent Itemset) Given an
uncertain transaction database UDB which includesN trans-
actions, a minimum support ratiomin sup, and a probabilis-
tic frequent threshold pft, an itemset X is a probabilistic
frequent itemset if X’s frequent probability is larger than
the probabilistic frequent threshold, namely,

Pr(X) = Pr{sup(X) ≥ N ×min sup} > pft

Example 2. (Probabilistic Frequent Itemset) Given an un-
certain database in Table 1, min sup=0.5, and pft = 0.7,
the probability distribution of the support of A is shown
in Table 2. So, the frequent probability of A is: Pr(X) =
Pr{sup(A) ≥ 4 × 0.5} = Pr{sup(A) ≥ 2} = Pr{sup(A) =
2} + Pr{sup(A) = 3} = 0.48 + 0.32 = 0.8 > 0.7 = pft.
Thus, {A} is a probabilistic frequent itemset.

3. ALGORITHMS OF FREQUENT ITEM-
SET MINING

We categorize the eight representative algorithms into three
groups. The first group is the expected support-based fre-
quent algorithms. These algorithms aim to find all expected
support-based frequent itemsets. For each itemset, these
algorithms only consider the expected support to measure
its frequency. The complexity of computing the expected
support of an itemset is O(N), where N is the number of
transactions. The second group is the exact probabilistic
frequent algorithms. These algorithms discover all proba-
bilistic frequent itemsets and report exact frequent proba-
bility for each itemset. Due to complexity of computing the
exact frequent probability instead of the simple expectation,

these algorithms need to spend at least O(Nlog2N) compu-
tation cost for each itemset. Moreover, in order to avoid
redundant processing, the Chernoff bound-based pruning is
a way to reduce the running time of this group of algorithm-
s. The third group is the approximate probabilistic frequent
algorithms. Due to the sound properties of the Poisson Bi-
nomial distribution, this group of algorithms can obtain the
approximate frequent probability with high quality by on-
ly acquiring the first moment (expectation) and the second
moment (variance). Therefore, the third kind of algorithms
have the O(N) computation cost and return the complete
probability information when uncertain databases are large
enough. To sum up, the third types of algorithms actually
build a bridge between two different definitions of frequent
itemsets over uncertain databases.

3.1 Expected Support-based Frequent Algo-
rithms

In this subsection, we summarize three the most represen-
tative expected support-based frequent itemset mining algo-
rithms: UApriori [17, 18], UFP − growth [22], UH−Mine
[4]. The first algorithm is based on the generate-and-test
framework employing the breath-first search strategy. The
other two algorithms are based on the divide-and-conquer
framework which uses the depth-first search strategy. Al-
though Apriori algorithm is slower than the other two al-
gorithms in deterministic databases, UApriori which is the
uncertain version of Apriori, actually performs rather well
among the three algorithms and is usually the fastest one in
dense uncertain datasets based on our experimental result-
s in Section 4. We further explain three algorithms in the
following subsections and Section 4.

3.1.1 UApriori
The first expected support-based frequent itemset min-

ing algorithm was proposed by Chui et al. in 2007 [18].
This algorithm extends the well-known Apriori algorithm
[8] to the uncertain environment and uses the generate-and-
test framework to find all expected support-based frequent
itemsets. We generally introduced UApriori algorithm as
follows. The algorithm first finds all the expected support-
based frequent items. Then, it repeatedly joins all expected
support-based frequent i-itemsets to produce (i+ 1)-itemset
candidates and test (i+ 1)-itemset candidates to obtain ex-
pected support-based frequent (i + 1)-itemsets. Finally, it
ends when no one expected support-based frequent (i + 1)-
itemset is generated.

Fortunately, the well-known downward closure property
[8] still works in uncertain databases. Thus, the traditional
Apriori pruning can be used when we check whether an item-
set is an expected support-based frequent itemset. In other
words, all supersets of this itemset must not be expected
support-based frequent itemsets. In addition, several decre-
mental pruning methods [17, 18] were proposed for further
improving the efficiency. These methods mainly aim to find
the upper bound of the expected support of an itemset as
early as possible. Once the upper bound is lower than the
minimum expected support, the traditional Apriori pruning
can be used. However, the decremental pruning methods de-
pend on the structure of datasets, thus, the most important
pruning method in UApriori is still the traditional Apriori
pruning.

3.1.2 UFP-Growth
UFP-growth algorithm [22] was extended from the FP-

growth algorithm [19] which is one of the most well-known
pattern mining algorithms in deterministic databases. Sim-
ilar to the traditional FP-growth algorithm, UFP-growth
algorithm also firstly builds an index tree, called UFP-tree
to store all information of the uncertain database. Then,
based on the UFP-tree, the algorithm recursively builds con-
ditional subtrees and finds expected support-based frequent
itemsets. The UFP-tree for the UDB in Table 1 is shown in
Figure 1 when min esup=0.25.

Figure 1: UFP-Tree

In the process of building the UFP-tree, it first finds all ex-
pected support-based frequent items and orders these items
by their expected supports. For the uncertain database in
Figure 1, the ordered item list is {C:2.6, A:2.1, F :1.8, B:1.4,
E:1.3, D:1.2} where the real number following the colon is
the expected support for each item. Based on the list, the
algorithm sorts each transaction and inserts the transaction
into the UFP-tree. Each node includes three values in UFP-
tree. The first value is the label of the item; the second value
is the appearance probability of this item; and the third val-
ue is the numbers that this node is shared from root to it.

Different from the traditional FP-tree, the compression
quality of UFP-tree is substantially reduced because it is
hard to take the advantage of the shared prefix path in the
FP-tree under uncertain databases. In the UFP-tree, items
may share one node only when their labels and appearance
probabilities are both same. Otherwise, items must be pre-
sented in two different nodes. In fact, the probabilities in
an uncertain database make the corresponding determinis-
tic database become sparse due to fewer shared nodes and
paths. Thus, uncertain databases are often considered as
the sparse databases. Given an UDB, we have to build many
conditional subtrees in the corresponding UFP-tree, which
leads much redundant computation. That is also the reason
why UFP-growth cannot achieve the similar performance as
FP-growth does.

3.1.3 UH-Mine
UH-Mine [4] is also based on the divide-and-conquer frame-

work and the depth-first search strategy. The algorithm was
extended from the H-Mine algorithm [27] which is a classi-
cal algorithm in deterministic frequent itemset mining. In
particular, H-Mine is quite suitable for sparse databases.

UH-Mine algorithm can be outlined as follows. Firstly, it
scans the uncertain database and finds all expected support-
based frequent items. Then, the algorithm builds a head ta-
ble which contains all expected support-based frequent item-
s. For each item, the head table stores three elements: the
label of this item, the expected support of such item, and a

pointer domain. After building the head table, the algorithm
inserts all transactions into the data structure,UH-Struct.

Figure 2: UH-Struct Generated from Table 1

Figure 3: UH-Struct of Head Table of A

In this data structure, each item is assigned with its label,
its appearing probability and a pointer. The UH-Struct of
Table 1 is shown in Figure 2. After building the global UH-
Strut, the algorithm uses the depth-first strategy to build
the head table in Figure 3 where A is the prefix. Then, the
algorithm recursively builds the head tables where different
itemsets are prefix and generates all expected support-based
frequent itemsets.

In frequent itemset mining over deterministic databases,
H-Mine algorithm fails to compress the data structure and
use the dynamic frequency order sub-structure, such as con-
ditional FP-trees, which only builds the head tables of differ-
ent itemsets recursively. Therefore, for the dense databases,
the FP-growth is superior because a larger number of items
are stored in fewer shared paths. However, for the sparse
databases, H-Mine is faster when building head tables of all
levels is faster than building all conditional subtrees. Thus,
it is quite likely that H-Mine is better than FP-growth in
sparse databases. As discussed in Section 3.1.2, uncertain
databases are quite sparse databases, so UH-Mine extended
from H-Mine always has the good performance.

Comparison of Three Algorithm Frameworks: More-
over, the search strategies and data structures of three above
algorithms are shown in Table 3, respectively.

3.2 Exact Probabilistic Frequent Algorithms
In this subsection, we summarize two existing representa-

tive probabilistic frequent itemset mining algorithms: DP
(Dynamic Programming-based Apriori algorithm) and DC

Table 3: Expected Support-based Algorithms
Methods Search Strategy Data Structure
UApriori Breadth-first Search None

UFPgrowth Depth-first Search UFP-tree
UH-Mine Depth-first Search UH-Struct

(Divide-and-Conquer-based Apriori Algorithm). The exact
probabilistic frequent itemset mining algorithms first cal-
culate or estimate the frequent probability of each itemset.
Then, only for itemsets whose frequent probabilities are larg-
er than the given probability threshold are returned together
with their exact frequent probabilities. Because computing
the frequent probability is more complicated than calculat-
ing the expected support, a quick estimation about whether
an itemset is a probabilistic frequent itemset can improve
the efficiency of the algorithms. Therefore, a probability tail
inequality-based pruning technique, Chernoff bound-based
pruning technique, becomes a key tool to improve the effi-
ciency of probabilistic frequent itemset mining algorithms.

3.2.1 Dynamic Programming-based Algorithms
Under the definition of the probabilistic frequent itemset,

it is critical to compute the frequent probability of an item-
set efficiently. [9] is the first work proposing the concept of
frequent probability of an itemset and designing a dynam-
ic programming-based algorithm to compute the frequent
probability. For the sake of the following discussion, we de-
fine that Pr≥i,j(X) denotes the probability that itemset X
appears at least i times among the first j transactions in the
given uncertain database. Pr(X ⊆ Tj) is the probability of
itemset X appears in the j-th transaction Tj . N is the num-
ber of transactions in the uncertain database. Therefore,
the recursive relationship is defined as follows: Pr≥i,j(X) =

Pr≥i−1,j−1(X)× Pr(X ⊆ Tj) + Pr≥i,j−1(X)× (1− Pr(X ⊆ Tj))

Boundary Case:

{
Pr≥0,j(X) = 1 0 ≤ j ≤ N
Pr≥i,j(X) = 0 i > j

Thus, the frequent probability equals Pr≥min sup,N (X). Ac-
cording to the dynamic programming method, DP algorith-
m uses the Apriori framework to find all probabilistic fre-
quent itemsets.

Based on the definition of the probabilistic frequent item-
set, the support of an itemset follows the Poisson Binomial
distribution, from which we can deduce that the frequent
probability actually equals that one subtracts the probabili-
ty computed from the corresponding cumulative distribution
function (CDF) of the support. Moreover, different from
UApriori, DP algorithm computes the frequent probability
instead of the expected support for each itemset. The time
complexity of the dynamic programming computation for
each itemset is O(N2 ×min sup).

3.2.2 Divide-and-Conquer-based Algorithms
Besides the dynamic programming-based algorithm, an-

other divide-and-conquer-based algorithm was proposed to
compute the frequent probability [28]. Unlike DP algorith-
m, DC divides an uncertain database, UDB, into two sub
database: UDB1 and UDB2. Then, in two sub-databases,
the algorithm recursively calls itself to divide the database
until only one transaction left. The algorithm stops to record
the probability distribution of the support of the itemset in
that transaction. Finally, through the conquering part, the
complete probability distribution of the itemset support is
obtained when the algorithm terminates.

If DC only involves the above divide-and-conquer process,
its time complexity of calculating the frequent probability of
an itemset is O(N2) where N is the number of transaction
in the uncertain database. However, in the conquering part,
DC algorithm can use the Fast Fourier Transform (FFT)

Table 4: Comparison of Complexity about Deter-
mining the Frequent Probability of An Itemset

Methods Complexity Accuracy
DP O(N2 ×min sup) Exact
DC O(Nlog2N) Exact

Chernoff O(N) False Positive

method to speed up the efficiency. Thus, the final time com-
plexity of DC algorithm is O(Nlog2N). In most practical
cases, DC algorithm outperforms DP algorithm according
to the experimental comparisons reported in Section 4.

3.2.3 Effect of the Chernoff Bound-based Pruning
Both the dynamic programming-based and divide-and-

conquer-based methods aim to calculate the exact frequent
probability for an itemset. However, the computation of the
frequent probability is redundant if an itemset is not a prob-
abilistic frequent itemset. Thus, for efficiency improvement,
it is a key problem to address how to filter out unpromising
probabilistic infrequent itemsets as early as possible. Be-
cause the support of an itemset follows Poisson Binomial
distribution, Chernoff bound [16] is a well-known tight up-
per bound of the frequent probability. The Chernoff bound-
based pruning is shown as follows.

Lemma 1. (Chernoff Bound-based Pruning [28]) Given
an uncertain transaction database UDB, an itemset X, a
minimum support threshold min sup, a probabilistic frequen-
t threshold pft, the expected support of X, µ=esup(X), an
itemset X is a probabilistic infrequent itemset if,{

2−δµ < pft δ > 2e− 1

e−
δ2µ
4 < pft 0 < δ < 2e− 1

where δ = (N ×min sup−µ− 1)/µ and N is the number of
transactions in UDB.

The Chernoff bound can be computed easily as long as
the expected support is given. The time complexity of com-
puting the Chernoff bound is O(N) where N is the number
of transactions.

Time Complexity and Accuracy Analysis: The time
complexity and the accuracy of different methods calculat-
ing or estimating the frequent probability of an itemset are
shown in Table 4. We can observe that DC algorithm usual-
ly outperforms DP algorithm in the efficiency. However, it
is possible that DP algorithm is faster than DC algorithm if
n2×min sup < nlog2n. The Chernoff bound-based pruning
spends O(N) to test whether an itemset is not a probabilis-
tic frequent itemset and hence it is the fastest. In addition,
with respect to the accuracy, itemsets must be probabilistic
frequent itemsets if they can pass the test of DP and DC.
However, for Chernoff bound-based pruning, there may ex-
ist a few false positive results because the Chernoff bound is
only an upper bound of the frequent probability.

3.3 Approximate Probabilistic Frequent Algo-
rithms

In this subsection, we focus on three approximate proba-
bilistic frequent algorithms. Because the support of an item-
set is considered as a random variable following Poisson Bi-
nomial distribution under both of definitions, the random
variable, i.e., the support of an itemset, can be approxi-
mated by the Poisson distribution and the Normal distribu-
tion effectively when uncertain databases are large enough.

Moreover, for random variables following Poisson distribu-
tion and Normal distribution, we can efficiently calculate
their probabilities if the expectations and the variances of
these random variables are known. Therefore, approximate
probabilistic frequent algorithms have the same efficiency of
expected support-based algorithms and also guarantee to re-
turn frequent probabilities of all probabilistic frequent item-
sets with high confidence.

3.3.1 Poisson Distribution-based UApriori
In [31], the authors proposed the Poisson distribution-

based approximate probabilistic frequent itemset mining al-
gorithm, called PDUApriori. Since we know that the sup-
port of an itemset follows Poisson Binomial distribution that
can be approximated by the Poisson distribution [12], the
frequent probability of an itemset can be rewritten by the
cumulative distribution function (CDF) of the Poisson dis-
tribution as follows.

Pr(X) ≈ 1− e−λ
N×min sup∑

i=0

λi

i!

where λ equals the expected support in the above formula
since the parameter λ in the Poisson distribution is the ex-
pectation. PDUApriori algorithm is implemented as follows.
Firstly, based on the given probabilistic frequent thresh-
old pft, the algorithm computes the corresponding expected
support λ . Then, the algorithm treats λ as the minimum
expected support and runs the UApriori algorithm to find
all the expected support-based frequent itemsets as all the
probabilistic frequent itemsets.

PDUApriori utilizes a sound property of the Poisson dis-
tribution, namely the fact that parameter λ is the expec-
tation and variance of the random variable following the
Poisson distribution. Because the cumulative distribution
function (CDF) of Poisson distribution is monotonic with
respect to λ, PDUApriori computes the corresponding λ of
the given pft and calls UApriori to find the results. How-
ever, this algorithm only approximately determines whether
an itemset is probabilistic frequent itemset, and it cannot
return the frequent probability values.

3.3.2 Normal Distribution-based UApriori
The Normal distribution-based approximate probabilistic

frequent itemset mining algorithm, NDUApriori, was pro-
posed in [10]. According to the Lyapunov Central Lim-
it Theory, Poisson Binomial distribution converges to the
Normal Distribution with high probability [25]. Thus, the
frequent probability of an itemset can be rewritten by the
standard normal distribution formula in the following for-
mula.

Pr(X) ≈ Φ(
N ×min sup− 0.5− esup(X)√

V ar(X)
)

where Φ(.) is the cumulative distribution function of stan-
dard Normal distribution, and Var(X) is the variance of the
support of X. NDUApriori algorithm employs the Aprior-
i framework and uses the cumulative distribution function
of standard Normal distribution to calculate the frequent
probability.

Different from PDUApriori, NDUApriori algorithm can
return frequent probabilities for all probabilistic frequent
itemsets. However, it is impractical to apply NDUApriori
on very large sparse uncertain databases since it employs
the Apriori framework.

Table 5: Comparison of Approximate Probabilistic
Algorithms

Methods Framework Approximation Methods
PDUApriori UApriori Poisson Approximation
NDUApriori UApriori Normal Approximation
NDUH-Mine UH-Mine Normal Approximation

3.3.3 Normal Distribution-based UH-Mine
According to the discussion in Section 3.3.1, we can con-

clude that the UH-mine usually outperforms other expect-
ed support-based algorithms in sparse uncertain databases.
Moreover, the Normal distribution-based approximation al-
gorithm can acquire the high quality approximate frequent
probability. Due to the merits of both the UH-mine and
Normal distribution approximation, we propose a novel al-
gorithm, NDUH − Mine which integrates the framework
of UH-Mine and the Normal distribution approximation in
order to achieve a win-win partnership in sparse uncertain
databases. Compared to UH-Mine, we calculate the vari-
ance of each itemset when UH-Mine obtains the expected
support of each itemset. In Section 4, we can observe that
NDUH-Mine has a better performance than NDUApriori on
large sparse uncertain data, which confirms our goal.

Therefore, the Normal distribution-based approximation
algorithms build a bridge between the expected support-
based frequent itemsets and the probabilistic frequent item-
sets. In particular, existing efficient expected support-based
mining algorithms can directly be reused in the problem
of mining probabilistic frequent itemsets and keep their in-
trinsic properties. In other words, under the definition of
mining probabilistic frequent itemsets, NDUApriori is the
fastest algorithm in large enough dense uncertain database,
while NDUH-Mine requires reasonable memory space and
scales well to very large sparse uncertain databases.

Comparison of Algorithm Framework and Approx-
imation Methods: Different from the exact probabilis-
tic frequent itemset mining algorithms, the computational
complexities of computing the frequent probability of each
itemset for different approximate probabilistic frequent algo-
rithms are the same, O(N) where N is the number of trans-
actions of the given uncertain database. Thus, we mainly
compare the different algorithm frameworks and approxi-
mation approaches for the three approximate probabilistic
frequent itemset mining algorithms in Table 5.

4. EXPERIMENTS
4.1 Experimental Settings

In this subsection, we introduce the experimental environ-
ment, the implementations, and the evaluation methods.

Firstly, in order to conduct a fair comparison, we build
a common implementation framework which provides com-
mon data structures and subroutines for implementing all
the algorithms. All the experiments are performed on an
Intel(R) Core(TM) i7 3.40GHz PC with 4GB main memory,
running on Microsoft Windows 7. Moreover, all algorithm-
s were implemented and compiled using Microsoft’s Visual
C++ 2010.

For each algorithm, we use the existing robust implemen-
tation for our comparison. According to the discussion in
Section 3, we separate comparisons into the three categories:
expected support-based algorithms; exact probabilistic fre-
quent algorithms; approximation probabilistic frequent algo-

rithms. For expected support algorithms, we use the version
in [17, 18] to implement the UApriori algorithm which em-
ployed decremental pruning and hashing techniques to speed
up the mining process. The implementation based on [22]
is used to test UFP-growth algorithm. We do not use the
UCFP-tree implementation [4] since there is no obvious op-
timization between UFP-growth algorithm and UCFP-tree
algorithm in terms of the running time and the memory
cost. The UH-Mine algorithm is implemented based on
the version in [4]. For four exact probabilistic frequent al-
gorithms, DPNB (Dynamic Programming-based Algorithm
with No Bound) algorithm that does not include the Cher-
noff bound-based pruning technique is implemented based
on the version in [9]. Correspondingly, DCNB (Divide-and-
Conquer-based Algorithm No Bound) algorithm is modified
based on the version in [28]. However, what is different is
in our algorithm, each item has their own probability, while
in [28], all items in a transaction share the same appearance
probability. Moreover, DPB (Dynamic Programming-based
Algorithm with Bound) algorithm [9] and DCB (Divide-and-
Conquer-based Algorithm with Bound) algorithm [28] repre-
sent the corresponding algorithms of DPNB and DCNB, but
include the Chernoff bound-based pruning, respectively. For
three approximation mining algorithms, the implementation
of PDUApriori is based on [31] and integrates all optimized
pruning techniques. PDUApriori [10] and PDUH-Mine are
implemented based on the frameworks of UApriori and UH-
Mine, respectively. Hashing function is used in the two al-
gorithms to compute the cumulative distribution function of
Standard Normal Distribution efficiently.

Based on the experimental comparisons of existing re-
searches, we choose five classical deterministic benchmarks
from FIMI repository [1], and assign a probability gener-
ated from Gaussian distribution to each item. Assigning
probability to deterministic database to generate meaning-
ful uncertain test data is widely accepted by the curren-
t community [4, 9, 10, 11, 17, 18, 22, 28, 30, 31]. Five
datasets include two dense datasets, Connect and Accident,
two sparse datasets, Kosarak and Gazelle, and a very large
synthetic dataset T25I15D320k which was used for testing
the scalability of uncertain frequent itemset mining algo-
rithms [4]. The characteristics of above datasets are shown
in Table 6. In addition, to verify the influence of uncer-
tainty, we also test another probability distribution, Zipf
distribution, instead of Gaussian distribution. Among the
cases that datasets following the Gaussian distribution, we
further categorize four scenarios. The first scenario is that
a dense dataset with high mean and low variance, namely
Connect with the mean (0.95) and the variance (0.05). The
second scenario is that a dense dataset with low mean and
high variance, namely Accident with the mean (0.5) and the
variance (0.5). The third scenario is that a sparse dataset
with high mean and low variance, namely Gazelle with the
mean (0.95) and the variance (0.05). The fourth scenario
is that a sparse dataset with low mean and high variance,
namely Kosarak with the mean (0.5) and the variance (0.5).
Moreover, in the case that dataset following the Zipf distri-
bution, the only one scenario that a dense dataset following
the Zipf distribution varying the skew from 0.8 to 2 is tested
because the sparse datasets followed Zipf distribution only
have a very small size of frequent itemsets, thus we did not
get any meaningful results from these datasets.

The probability parameters and their default values of

Table 6: Characteristics of Datasets
Dataset # of Trans. # of Items Ave. Len. Density
Connect 67557 129 43 0.33
Accident 340183 468 33.8 0.072
Kosarak 990002 41270 8.1 0.00019
Gazelle 59601 498 2.5 0.005

T25I15D320k 320,000 994 25 0.025

Table 7: Default Parameters of Datasets
Dataset Mean Var. min sup pft
Connect 0.95 0.05 0.5 0.9
Accident 0.5 0.5 0.5 0.9
Kosarak 0.5 0.5 0.0005 0.9
Gazelle 0.95 0.05 0.025 0.9

T25I15D320k 0.9 0.1 0.1 0.9

each datasets are shown in Table 7. For all the tests, we
perform 10 runs per experiment and report the averages. In
addition, we do not report the running time over 1 hour.

4.2 Expected Support-based Algorithms
In this section, we compare three expected support-based

algorithms, UApriori, UFP-growth, and UH-Mine. Firstly,
we report the running time and the memory cost in two
dense datasets and two sparse datasets. Secondly, we present
the scalability of the three algorithms. Finally, we study the
influence of the skew in the Zipf distribution.

Running Time. Figures 4(a) - 4(d) show the running
time of expected support-based algorithms w.r.t min esup
in Connect, Accident, Kosarak, and Gazelle datasets. When
min esup decreases, we observe that the running time of all
the algorithms goes up. Moreover, UFP-growth is always
the slowest in the above results. UApriori is faster than UH-
Mine in Figures 4(a) and 4(b), on the other hand, UH-Mine
is faster than UApriori in Figures 4(c) and 4(d).

It is reasonable because UApriori outperforms other algo-
rithms under the conditions that uncertain dataset is dense
and min esup is high enough. These conditions cause the
search space of mining algorithm relatively small. Under this
case, the breadth-first-search-based algorithms are faster than
the depth-first-search-based algorithms. Thus, UApriori out-
performs the other two depth-first-search-based algorithms
in Figure 4(a) and 4(b). Otherwise, the depth-first-search-
based algorithm, UH-Mine, is better, which is proven by
Figures 4(c) and 4(d). However, even UFP-growth using
depth-first-search strategy, it does not perform well because
UFP-growth spends too much time on recursively construct-
ing many redundant conditional subtrees with limited shared
paths. In addition, the other interesting observation is that
slopes of curves in Figure 4(a) are larger than those in 4(c)
even if the size of Connect is smaller than that of Kosarak.
This result makes sense because the slope of the curve de-
pends on the density of a dataset.

Memory Cost. According to Figures 4(e) - 4(h), UFP-
growth spends the most memory among all the three algo-
rithms. Similar to the conclusion given in the above analysis
of Running Time, UApriori is superior to UH-Mine if and
only if the uncertain dataset is dense and min esup is high
enough, otherwise, UH-Mine is the winner.

UApriori uses less memory when min esup is high and
dataset is dense because there are small number of frequent
itemsets generated which results in small search space. How-
ever, as min esup decreasing and dataset becoming sparse,
UApriori has to require much more memory to store redun-

0.40.50.60.70.80.9

10

100

3,600

min_esup

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

UApriori
UH−Mine
UFP−growth

(a) Connect: min esup vs. time

0.10.20.30.40.5

10

100

1,000

3,600

min_esup

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

UApriori
UH−Mine
UFP−growth

(b) Accident: min esup vs. time

0.0010.00250.0050.010.050.1

100

3,600

min_esup

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

UApriori
UH−Mine
UFP−growth

(c) Kosarak: min esup vs. time

0.1 0.01 0.001 1.0E−4

100

3600

min_esup

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

UApriori
UH−Mine
UFP−growth

(d) Gazelle: min esup vs. time

0.40.50.60.70.80.9

10
2

10
3

min_esup

M
em

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(e) Connect: min esup vs. memory

0.10.20.30.40.5
100

150

200

250

300

min_esup

M
em

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(f) Accident: min esup vs. memory

0.0010.00250.0050.010.050.1
0

100

200

300

400

500

min_esup

M
em

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(g) Kosarak: min esup vs. memory

0.1 0.01 0.001 1.0E−4

10

100

400

800

min_esup

M
am

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(h) Gazelle: min esup vs. memory

20 40 80 100 160 320

10

100

550

Number of Transactions (K)

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

UApriori
UH−Mine
UFP−growth

(i) Scalability vs. time

20 40 80 100 160 320
10

100

300

900

Number of Transactions (K)

M
em

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(j) Scalability vs. memory

0.8 1.2 1.6 2

10

100

350

Skew

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

UApriori
UH−Mine
UFP−growth

(k) Zipf: skew vs. time

0.8 1.2 1.6 2
100

500

1220

Skew

M
em

or
y

C
os

t (
M

B
)

UApriori
UH−Mine
UFP−growth

(l) Zipf: skew vs. memory

Figure 4: Performance of Expected Support-based Frequent Algorithms

dant infrequent candidates. Thus, the memory usage trend
of UApriori changes sharply with decreasing min esup. For
UH-Mine, the main memory cost is used to initialize its UH-
Struct. However, with the increase of min esup, UH-Struct
only spends the limited memory cost on building the head
tables for different prefixes. Therefore, the memory usage of
UH-Mine increases smoothly. Moreover, similar to the dis-
cussion of Running Time, UFP-growth is the most memory
consuming one among three algorithms.

Scalability. We further analyze the scalability of three
expected support-based algorithms. In Figure 4(i), varying
the number of transactions in the dataset from 20k to 320k,
we observe that the running time is linear. With the in-
crease of the size of dataset, the time of UApriori is close to
that of UH-mine. This is reasonable because all the items
in T25I15D30k have similar distributions. Therefore, with
the increase of transactions, the running time of algorithms
increase linearly. Figure 4(j) reports the memory usages of
three algorithms which demonstrate the linearity in terms
of the number of transactions. Moreover, we can find that
the memory usage increase of UApriori is more steady than
that of two other algorithms. This is because UApriori need-
s not to build a special data structure to store the uncer-
tain database. However, the two other algorithms have to
spend the extra memory cost for storing their data struc-
tures. Therefore, the curve of UApriori is more steady.

Effect of the Zipf distribution. For verifying the in-
fluence of uncertainty under different distributions, Figures
4(k) and 4(l) show the running time and the memory cost
of three algorithms in terms of the skew parameter of Zipf
distribution. We can observe that the running time and the
memory cost decrease with the increase of the skew parame-
ter. Due to the property of Zipf distribution, more items are
assigned the zero probability with the increase of the skew

parameter, which results in fewer frequent itemsets. Specif-
ically, when the skew parameter increases, we can observe
that UH-Mine outperforms UApriori gradually.

Conclusions. To sum up, under the definition of expect-
ed support-based frequent itemset, there is no clear winner
among current proposed mining algorithms. In the condition
of dense datasets and higher min esup, UApriori spends the
least time and memory. Otherwise, UH-Mine is the winner.

Moreover, UFP-growth is often the slowest algorithm and
spends the largest memory cost since UFP-growth has only
limited shared paths so that it has to spend too much time
and memory on redundant recursive computation.

Finally, the influence of the Zipf distribution is similar to
that of a very sparse dataset. Under the Zipf distribution,
UH-Mine algorithm usually performs very well.

4.3 Exact Probabilistic Frequent Algorithms
In this section, we compare four probabilistic frequent al-

gorithms: DPNB, DCNB, DPB and DCB. Firstly, we show
the running time and the memory cost in terms of changing
min sup. Then, we present the influence of pft on the run-
ning time and the memory cost. Moreover, the scalability
of the three algorithms is studied. Finally, we report the
influence of the skew in the Zipf distribution as well.

Effect of min sup. Figures 5(a) and 5(c) show the run-
ning time of four competitive algorithms w.r.t. min sup
in Accident and Kosarak datasets, respectively. With the
Chernoff-bound-based pruning, we can see that DCB is al-
ways faster than DPB. However, without the Chernoff-bound-
based pruning, we can find that DCNB is always faster
than DPNB. This is reasonable because the time complexi-
ty of computing the frequent probability of each itemset in
divide-and-conquer-based algorithms is O(Nlog2N), which
is more efficient than that of dynamic programming-based

0.40.50.60.70.80.9

10

100

1000
1800

min_sup

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(a) Accident: min sup vs. time

0.40.50.60.70.80.9
140

200

230

min_sup

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(b) Accident: min sup vs. memory

0.10.20.30.40.50.60.70.80.9

10

100

1,800

min_sup

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(c) Kosarak: min sup vs. time

0.10.20.30.40.50.60.70.80.9
100

150

200

250

min_sup

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(d) Kosarak: min sup vs. memory

0.10.20.30.40.50.60.70.80.9

10

100

1,000
1,950

pft

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(e) Accident: pft vs. time

0.10.20.30.40.50.60.70.80.9
150

170

190

220

pft

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(f) Accident: pft vs. memory

0.10.20.30.40.50.60.70.80.9
10

100

850

pft

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(g) Kosarak: pft vs. time

0.10.20.30.40.50.60.70.80.9

150

200

250

pft

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(h) Kosarak: pft vs. memory

20 40 80 100 160 320

10

100

700

Number of Transactions (K)

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(i) Scalability vs. time

20 40 80 100 160 320
10

50

100

170

Number of Transactions (K)

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(j) Scalability vs. memory

0.8 1.2 1.6 2
0

50

100

150

200

Skew

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DPNB
DPB
DCNB
DCB

(k) Zipf: skew vs. time

0.8 1.2 1.6 2
140

170

200

220

Skew

M
em

or
y

C
os

t (
M

B
)

DPNB
DPB
DCNB
DCB

(l) Zipf: skew vs. memory

Figure 5: Performance of Exact Probabilistic Frequent Algorithms

algorithms, O(N2×min sup). Comparing the same type of
algorithms, we can find that DCB is faster than DCNB and
DPB is faster than DPNB. These results show that most
infrequent itemsets can be filtered by the Chernoff bound-
based pruning quickly. Moreover, we also observe that DPB
is faster than DCNB, this is because there are only a smal-
l number of frequent itemsets that need to compute their
frequent probabilities when min sup is high, most of the in-
frequent itemsets are already pruned by the Chernoff bound.

In addition, according to Figures 5(b) and 5(d), this is
very clear that DPB and DPNB require less memory than
DCB and DCNB. It is reasonable because both DCB and D-
CNB trade off the memory for the efficiency based on their
the divide-and-conquer strategy. In addition, we can observe
that the memory usage trend of DCNB changes sharply with
decreasingmin sup because there are a few frequent itemset-
s when min sup is high and most of infrequent itemsets are
filtered out by the Chernoff bound-based pruning. In partic-
ular, we can find that similar observations w.r.t min sup are
shown in both the dense and the sparse datasets, which in-
dicate that the density of the databases is not the key factor
affecting the running time and the memory usage of exact
probabilistic frequent algorithms.

Effect of pft. Figures 5(e) and 5(g) report the running
time w.r.t. pft. We can find that DCB is still the fastest
algorithm and DPNB is the slowest one. Different from the
results w.r.t. min sup, DCNB is always faster than DPB
when pft varies. Additionally, Figures 5(f) and 5(h) show
the memory cost w.r.t. pft. The memory usages of both
DPB and DPNB are always significantly smaller than those
of both DCB and DCNB. Furthermore, we find that, by
varying pft, the changing trends of the runing time and
the memory cost are quite stable. Thus, pft does not have
significant impact to the running time and the memory of

the four mining algorithms. This is reasonable because most
frequent probabilities of frequent itemsets are one and it is
also further explained in the next subsection.

Scalability. Similar to the scalability analysis in Section
4.2, we still use the T25I15D320k dataset to test the scal-
ability of four exact probabilistic frequent itemset mining
algorithm. In Figures 5(i), we can find that the trends of
running time of all algorithms are linear with the increase
of the number of transactions. In particular, the trends of
both DC and DCNB are more smooth than those of DP
and DPNB because the time complexities of computing fre-
quent probability for DC and DCNB are both O(Nlog2N)
and better than the time complexities of DP and DPNB. In
Figures 5(j), we can observe that the memory cost of four
algorithms linearly varies w.r.t. the number of transactions.

Effect of the Zipf distribution. Figures 5(k) and 5(l)
show the running time and the memory cost of four exact
probabilistic frequent mining algorithms in terms of the skew
parameter of Zipf distribution. We can observe that the run-
ning time and the memory cost decrease with the increase of
the skew parameter. We can find that, through varying the
skew parameter, the changing trends of the runing time and
the memory cost are quite stable. Therefore, the skew pa-
rameter of Zipf distribution does not have significant impact
to the running time and the memory cost.

Conclusions. First of all, among exact probabilistic fre-
quent itemsets mining algorithms, DCB algorithm is the
fastest algorithm in most cases. However, compared to DP-
B, it has to spend more memory for the divide-and-conquer
processing.

In addition, the Chernoff bound-based pruning is the most
important tool to speed up exact probabilistic frequent item-
set mining algorithms. Based on computational analysis, the
computing Chernoff bound of each itemset is only O(N).

0.010.10.20.30.40.5

10

100

1,000

3,600

min_sup

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(a) Accident: min sup vs. time

0.010.10.20.30.40.5
100

140

180

220

260

300

340

380
400

min_sup

M
em

or
y

C
os

t (
M

B
)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(b) Accident: min sup vs. memory

0.0010.00150.00250.0050.01
0

600

1200

1800

2400

min_sup

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(c) Kosarak: min sup vs. time

0.0010.00150.00250.0050.01
0

50

100

150

170

min_sup

M
em

or
y

C
os

t (
M

B
)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(d) Kosarak: min sup vs. memory

0.10.20.30.40.50.60.70.80.9
0

50

100

150

200

250

pft

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(e) Accident: pft vs. time

0.10.20.30.40.50.60.70.80.9
90

120

150

180

210

pft

M
em

or
y

C
os

t (
M

B
)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(f) Accident: pft vs. memory

0.10.20.30.40.50.60.70.80.9
0

30

60

90

120

150

180

pft

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(g) Kosarak: pft vs. time

0.10.20.30.40.50.60.70.80.9
90

120

150

180

210

240

pft

M
em

or
y

C
os

t (
M

B
)

DCB
PDUApriori
NDUApriori
NDUH−Mine

(h) Kosarak: pft vs. memory

0 20 40 80100 160 320
0

100

100

300

400

500

600
650

Number of Transactions (K)

R
un

ni
ng

 T
im

e
(S

ec
on

ds
)

PDUApriori
NDUApriori
NDUH−Mine

(i) Scalability vs. time

0 20 40 80100 160 320
0

30

60

90

120

Number of Transactions (K)

M
em

or
y

C
os

t (
M

B
)

PDUApriori
NDUApriori
NDUH−Mine

(j) Scalability vs. memory

0.8 1.2 1.6 2
0

50

100

150

200

250

Skew

R
un

ni
ng

 T
im

e
(S

ec
nd

s)

PDUApriori

NDUApriori

NDUH−Mine

(k) Zipf: skew vs. time

0.8 1.2 1.6 2
100

105

110

115

120

125

Skew

M
em

or
y

C
os

t (
M

B
)

PDUApriori

NDUApriori

NDUH−Mine

(l) Zipf: skew vs. memory

Figure 6: Performance of Approximation Probabilistic Frequent Algorithms

However, DC and DP algorithms have to spend O(Nlog2N)
and O(N2×min sup) to calculate the exact frequent proba-
bility for each an itemset, respectively. Therefore, it is clear
that Chernoff bound-based pruning can reduce the running
time if it can filter out some infrequent itemsets.
4.4 Approximate Probabilistic Frequent Algo-

rithms
In this section, we mainly compare three approximation

probabilistic frequent algorithms, PDUApriori, NDUApri-
ori, and NDUH-Mine, and an exact probabilistic frequent
algorithm, DCB. Firstly, we report the running time and
the memory cost in terms of min sup. Then, we present the
running time and the memory cost when pft is changed. In
addition, we test the precsion and the recall to evaluate the
approximation quality. Finally, we report the scalability.

Effect of min sup. First of all, we test the running
time and memory cost of four algorithms w.r.t. the min-
imum support, min sup shown in Figures 6(a) - 6(d). In
Figure 6(a), both PDUApriori and NDUApriori are faster
than the other two. In Figure 6(c), NDUH-Mine is the
fastest. Moreover,DCB is the slowest algorithm among the
four algorithms since it offers exact answers. This is reason-
able because PDUApriori and NDUApriori are based on the
UApriori framework which performs best under the condi-
tions that uncertain dataset is dense and min sup is enough
high. Otherwise, NDUH-Mine is the best.

In addition, in Figures 6(b)and 6(d), it is very clear that P-
DUApriori, NDUApriori, and NDUH-Mine require less mem-
ory than DCB. This is reasonable because DCB uses the
divide-and-conquer strategy to obtain the exact results. In
Figure 6(b), both PDUApriori and NDUApriori require less
memory because the dataset is dense. In Figure 6(d), NDUH-
Mine spends less memory since this dataset is sparse.

Effect of pft. Figure 6(e) reports the time in terms of
varying pft. We can see that both of PDUApriori and ND-
UApriori are still the fastest algorithms in Accident dataset.

Table 8: Accuracy in Accident

Min Sup
PDUApriori NDUApriori NDUH-Mine
P R P R P R

0.2 0.91 1 0.95 1 0.95 1
0.3 1 1 1 1 1 1
0.4 1 1 1 1 1 1
0.5 1 1 1 1 1 1
0.6 1 1 1 1 1 1

Table 9: Accuracy in Kosarak

Min Sup
PDUApriori NDUApriori NDUH-Mine
P R P R P R

0.0025 0.91 1 0.95 1 0.95 1
0.005 0.94 1 0.96 1 0.96 1
0.01 0.97 1 0.98 1 0.98 1
0.05 0.98 1 1 1 1 1
0.1 1 1 1 1 1 1

However, in Figure 6(g), NDUH-Mine is the fastest algorith-
m. The results also confirm that the density of databases
is the most important factor for the approximate algorithm
efficiency again. However, Figure 6(f) shows that the mem-
ory cost of all four algorithms is steady. Similar results are
also shown in Figure 6(h). Hence, varying pft almost does
not influence the memory cost of algorithms.

Precision and Recall. Besides offering efficient running
time and effective memory cost, the approximation accuracy
is a more important target for the approximation probabilis-
tic frequent itemset mining algorithms. We use the precision

which equals |AR∩ER||AR| and the recall which equals |AR∩ER||ER|
to measure the accuracy of approximation probabilistic fre-
quent mining algorithm. Please note that AR means the
result generated from the approximation probabilistic fre-
quent algorithm, and ER is the result generated from the
exact probabilistic frequent algorithm. Moreover, we only
test the precision and the recall w.r.t varying min sup be-
cause the influence of pft is far less than the min sup. Table
8 and Table 9 are shown the precisions and the recalls of two

Table 10: Summary of Eight Representative Frequent Itemset Algorithms over Uncertain Databases
Expected Support-based Alg Exact Prob. Freq. Alg Approx. Prob. Freq. Alg

UApriori UH-Mine UFP-growth DP DC PDUApriori NDUApriori NDUH-Mine
Time(D)

√
(min esup high)

√
(min esup low)

√ √
(min sup high)

√
(min sup high)

√
(min sup low)

Time(S)
√ √ √

Memory(D)
√

(min esup high)
√

(min esup low)
√ √

(min sup high)
√

(min sup high)
√

(min sup low)
Memory(S)

√ √ √

Accuracy Exact Exact Exact Exact Exact Approx. Approx.(Better) Approx.(Better)

approximation probabilistic frequent algorithms in Accident
and Kosarak, respectively. We can find that the precision
and the recall are almost 1 in Accident dataset which mean-
s there is almost no false positive and false negative. In
Kosarak, we also observe that there are a few false posi-
tives with decreasing of min sup. In addition, the Normal
distribution-based approximation algorithms can get better
approximation effect than the Poisson distribution-based ap-
proximation algorithms. This is because the expectation and
the variance in the Poisson distribution is the same, which
is λ , but, in fact, the expected support and the variance of
an itemset are usually unequal.

Scalability. We further analyze the scalability of three
approximate probabilistic frequent mining algorithms. In
Figure 6(i), varying the number of transactions in the dataset
from 20k to 320k, we find that the running time is linear.
Figure 6(j) reports the memory cost of three algorithms
which show the linearity in terms of the number of trans-
actions. Therefore, NDUH-Mine performs best.

Effect of the Zipf distribution. Figures 6(k) and 6(l)
show the running time and the memory cost of three ap-
proximate algorithms in terms of the skew parameter of Zipf
distribution. We can observe that the running time and the
memory cost decrease with the increase of the skew param-
eter. In particular, when the skew parameter increases, we
can observe that PDUApriori outperforms NDUApriori and
NDUH-Mine gradually.

Conclusions. First of all, approximation probabilistic
frequent itemset mining algorithms can get high-quality ap-
proximation when the uncertain database is large enough
due to the requirement of CLT. In our experiments, the
datasets usually include more than 50,000 transactions. These
approximation algorithms almost have no false positive or
false negative. These results are reasonable because the Lya-
punov CLT guarantees the approximation quality.

In addition, in terms of the efficiency, the approximation
mining algorithms are much better any existing exact proba-
bilistic frequent itemset mining algorithms. Moreover, Nor-
mal distribution-based algorithms usually are faster than the
Poisson distribution-based algorithm.

Finally, similar to the case of expected support-based fre-
quent algorithms, NDUApriori is always the fastest algorith-
m in dense uncertain databases, while NDUH-Mine usually
the best algorithm in sparse uncertain databases.
4.5 Summary of New Findings

We summarize experimental results under different cases
in Table 10 where ‘

√
’ means the winner in that case. More-

over, ‘time(D)’ means that the time cost in the dense data
set, and ‘time(S)’ means that the time cost in the sparse
data set. The meanings of ‘memory(D)’ and ‘memory(S)’
are similar.

• As observed in Table 10, under the definition of expect-
ed support-based frequent itemset, UApriori is usually
the fastest algorithm with lower memory cost when the

database is dense and min sup is high. On the con-
trary, when the database is sparse or min sup is low,
UH-Mine often outperforms other algorithms in the
running time and only spends limited memory cost.
However, UFP-growth is almost the slowest algorithm
with high memory cost.

• From Table 10, among exact probabilistic frequent item-
sets mining algorithms, DC algorithm is the fastest
algorithm in most cases. However, it trades off the
memory cost for the efficiency because it has to store
recursive results for the processing of the divide-and-
conquer. In addition, when the condition is satisfied,
DP algorithm is faster than DC algorithm.

• Again from Table 10, both PDUApriori and NDU-
Apriori is the winner in the running time and the
memory cost when the database is dense and min sup
is high, otherwise, NDUH-Mine is the winner. The
main difference between PDUApriori and NDUAprior-
i is that NDUApriori has better approximation when
the database is large enough.

Other than the result described in Table 10, we also find:

• Approximation probabilistic frequent itemset mining
algorithms usually get a high-quality approximation ef-
fect in most cases. To our surprise, the frequent proba-
bilities of most probabilistic frequent itemsets are often
1 when the uncertain databases are large enough such
as the number of transaction is more than 10,000. It is
a reasonable result. On the one hand, Lyapunov Cen-
tral Limit Theory guarantees the high-quality approx-
imation. On the other hand, according to the cumu-
lative distribution function (CDF) of the Poisson dis-
tribution, we know that the frequent probability of an

itemset can be approximated as 1−e−λ
∑N×min sup
i=0

λi

i!
where λ is the expected support of this itemset. When
an uncertain database is large enough, the expected
support of this itemset is usually large if it is a proba-
bilistic frequent itemset. Thus, as a consequence, the
frequent probability of this itemset equals 1.

• Approximation probabilistic frequent itemset mining
algorithms usually far outperform any existing exact
probabilistic frequent itemset mining algorithms in the
algorithm efficiency and the memory cost. Therefore,
the result under the definition of probabilistic frequent
itemset can be obtained by the existing solutions un-
der the definition of expected support-based frequent
itemset if we compute the variance of the support of
itemsets as well.

• Chernoff bound is an important tool to improve the
efficiency of exact probabilistic frequent algorithms be-
cause it can filter out the infrequent itemsets quickly.

5. CONCLUSIONS
In this paper, we conduct a comprehensive experimen-

tal study of all the frequent itemset mining algorithms over
uncertain databases. Since there are two definitions of fre-
quent itemsets over uncertain data, most existing researches
are categorized into two directions. However, through our
exploration, we firstly clarify that there is a close relation-
ship between two different definitions of frequent itemsets
over uncertain data. Therefore, we need not use the current
solution for the second definition and replace them with ef-
ficient existing solution of first definition. Secondly, we pro-
vide baseline implementations of eight existing representa-
tive algorithms and test their performances under a uniform
measurement fairly. Finally, based on extensive experiments
over many different benchmarks, we verify several existing
inconsistent conclusions and find some new rules in this area.

6. ACKNOWLEDGMENTS
This work is supported in part by the Hong Kong RGC

GRF Project No.611411, National Grand Fundamental Re-
search 973 Program of China under Grant 2012-CB316200
and 2011-CB302200-G, HP IRP Project 2011, Microsoft Re-
search Asia Grant, MRA11EG05, the National Natural Sci-
ence Foundation of China (Grant No.61025007, 60933001,
61100024), US NSF grants DBI-0960443, CNS-1115234, and
IIS-0914934, and Google Mobile 2014 Program.

7. REFERENCES
[1] Frequent itemset mining implementations repository.

http://fimi.us.ac.be.

[2] Wikipedia of poisson binomial distribution.

[3] C. C. Aggarwal. Managing and Mining Uncertain
Data. Kluwer Press, 2009.

[4] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang.
Frequent pattern mining with uncertain data. In
KDD, pages 29–38, 2009.

[5] C. C. Aggarwal and P. S. Yu. Outlier detection with
uncertain data. In SDM, pages 483–493, 2008.

[6] C. C. Aggarwal and P. S. Yu. A survey of uncertain
data algorithms and applications. IEEE Trans. Knowl.
Data Eng., 21(5):609–623, 2009.

[7] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD, pages 207–216, 1993.

[8] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules in large databases. In VLDB, pages
487–499, 1994.

[9] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and
A. Züfle. Probabilistic frequent itemset mining in
uncertain databases. In KDD, pages 119–128, 2009.

[10] T. Calders, C. Garboni, and B. Goethals.
Approximation of frequentness probability of itemsets
in uncertain data. In ICDM, pages 749–754, 2010.

[11] T. Calders, C. Garboni, and B. Goethals. Efficient
pattern mining of uncertain data with sampling. In
PAKDD, pages 480–487, 2010.

[12] L. L. Cam. An approximation theorem for the poisson
binomial distribution. Pacific Journal of Mathematics,
10(4):1181–1197, 1960.

[13] L. Chen and R. T. Ng. On the marriage of lp-norms
and edit distance. In VLDB, pages 792–803, 2004.

[14] L. Chen, M. T. Özsu, and V. Oria. Robust and fast
similarity search for moving object trajectories. In
SIGMOD, pages 491–502, 2005.

[15] R. Cheng, D. V. Kalashnikov, and S. Prabhakar.
Querying imprecise data in moving object
environments. IEEE Trans. Knowl. Data Eng.,
16(9):1112–1127, 2004.

[16] H. Chernoff. A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations.
Ann. Math. Statist., 23(4):493–507, 1952.

[17] C. K. Chui and B. Kao. A decremental approach for
mining frequent itemsets from uncertain data. In
PAKDD, pages 64–75, 2008.

[18] C. K. Chui, B. Kao, and E. Hung. Mining frequent
itemsets from uncertain data. In PAKDD, pages
47–58, 2007.

[19] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, pages
1–12, 2000.

[20] B. Jiang and J. Pei. Outlier detection on uncertain
data: Objects, instances, and inferences. In ICDE,
pages 422–433, 2011.

[21] B. Kao, S. D. Lee, F. K. F. Lee, D. W.-L. Cheung,
and W.-S. Ho. Clustering uncertain data using voronoi
diagrams and r-tree index. IEEE Trans. Knowl. Data
Eng., 22(9), 2010.

[22] C. K.-S. Leung, M. A. F. Mateo, and D. A. Brajczuk.
A tree-based approach for frequent pattern mining
from uncertain data. In PAKDD, pages 653–661, 2008.

[23] M. Li and Y. Liu. Underground coal mine monitoring
with wireless sensor networks. TOSN, 5(2):10, 2009.

[24] Y. Liu, K. Liu, and M. Li. Passive diagnosis for
wireless sensor networks. IEEE/ACM Trans. Netw.,
18(4):1132–1144, 2010.

[25] M. Mitzenmacher and E. Upfal. Probability and
Computing: Randomized algorithm and probabilistic
analysis. Cambridge University Press, 2005.

[26] L. Mo, Y. He, Y. Liu, J. Zhao, S. Tang, X.-Y. Li, and
G. Dai. Canopy closure estimates with greenorbs:
sustainable sensing in the forest. In SenSys, pages
99–112, 2009.

[27] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang.
H-mine: Hyper-structure mining of frequent patterns
in large databases. In ICDM, pages 441–448, 2001.

[28] L. Sun, R. Cheng, D. W. Cheung, and J. Cheng.
Mining uncertain data with probabilistic guarantees.
In KDD, pages 273–282, 2010.

[29] S. Suthram, T. Shlomi, E. Ruppin, R. Sharan, and
T. Ideker. A direct comparison of protein interaction
confidence assignment schemes. BMC Bioinformatics,
7:360, 2006.

[30] Y. Tong, L. Chen, and B. Ding. Discovering
threshold-based frequent closed itemsets over
probabilistic data. In ICDE, pages 270–281, 2012.

[31] L. Wang, R. Cheng, S. D. Lee, and D. W.-L. Cheung.
Accelerating probabilistic frequent itemset mining: a
model-based approach. In CIKM, pages 429–438, 2010.

[32] M. J. Zaki. Scalable algorithms for association mining.
IEEE Trans. Knowl. Data Eng., 12(3):372–390, 2000.

[33] Q. Zhang, F. Li, and K. Yi. Finding frequent items in
probabilistic data. In SIGMOD, pages 819–832, 2008.

	Introduction
	Definitions
	Algorithms of Frequent Itemset Mining
	Expected Support-based Frequent Algorithms
	UApriori
	UFP-Growth
	UH-Mine

	Exact Probabilistic Frequent Algorithms
	Dynamic Programming-based Algorithms
	Divide-and-Conquer-based Algorithms
	Effect of the Chernoff Bound-based Pruning

	Approximate Probabilistic Frequent Algorithms
	Poisson Distribution-based UApriori
	Normal Distribution-based UApriori
	Normal Distribution-based UH-Mine

	Experiments
	Experimental Settings
	Expected Support-based Algorithms
	Exact Probabilistic Frequent Algorithms
	Approximate Probabilistic Frequent Algorithms
	Summary of New Findings

	Conclusions
	Acknowledgments
	References

